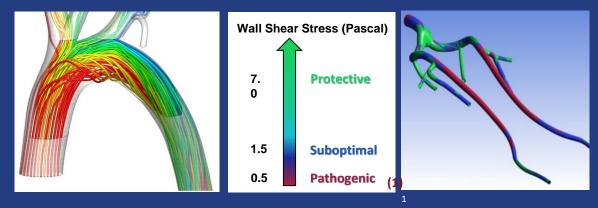


TAMPA, FLORIDADECEMBER 5, 2020

3-Year Results from the MIMICS-2 Study

DISCLOSURES

BioMimics 3D[®]: The Swirling Flow[®] Stent


- Helical centerline
- Simple, accurate placement using standard delivery system

- Imparts non-planar curvature to stented femoropopliteal segment¹
- Improved biomechanical performance compared to straight stents¹
- 0% stent fracture MIMICS-2 IDE Study

BioMimics 3D and Swirling Flow are Registered Trademarks of Veryan Medical Limited

BioMimics 3D:Helical Centerline Promotes Swirling Flow

- Swirling flow increases wall shear stress (WSS) on endothelial cells
- WSS naturally protects against atherosclerosis and intimal thickening (2)
- Increased WSS has been shown ⁽³⁾ to provide an antiproliferative effect after stenting,
 without the need for a drug
- 1. Malek AM et al, JAMA 1999;252:2035-2042
- Caro CG, Arterioscler Thromb Vasc Biol 2009, 29:158-161
- 3. Caro CG et al, J R Soc Interface 10: 20130578

In Vivo CFD Modelling of Swirling Flow in the Stented Segment

LifeStent (left) and BioMimics 3D Stent (right)

Improving the Biomechanics

Bent knee cadaver study

BioMimics 3D

Straight Stent

MIMICS Clinical Programme

MIMICS FIH

N = 10 1 site Germany

- First in Human
- FU 1 year
- Completed

MIMICS RCT

N = 50 8 sites Germany

- Randomised controlled trial
- FU 2 years
- Completed

MIMICS RCT

N = 50 8 sites Germany

- Randomized controlled trial
- FU 2 years
- Completed

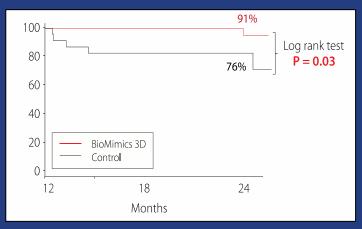
MIMICS^{3D} USA

N = c. 500 c. 40 sites USA

- Prospective Registry
- FU 3 years
- Enrolment ongoing

MIMICS et seq

N = c. 400 Multiple sites Europe


- Physician initiated prospective and retrospective registries
- Enrolment ongoing

1750+ patients

MIMICS Randomized Controlled Trial

8 Investigational Sites Corelab (DUS; angiography; Xray)		
FIM Lead-in	N=10 BioMimics 3D	
Prospective Randomization	BioMimics 3D N=50	Straight nitinol stent N=26
24-Month Primary Patency (p=0.05)	72%	55%
Freedom from CDTLR 12-24 months (p=0.03)	91%	76%

Freedom from CDTLR Landmark Analysis²

Provided the first clinical proof supporting the durable outcome benefit arising from the BioMimics 3D stent compared to a straight nitinol stent^{1, 2}

^{1.} Zeller T et al; Circ Cardiovasc Interv. 2016

^{2.} Sullivan TM et al; Int J Vasc Med. 2018

MIMICS Clinical Programme

MIMICS FIH

N = 10 1 site Germany

- First in Human
- FU 1 year
- Completed

MIMICS RCT

N = 50 8 sites Germany

- Randomised controlled trial
- FU 2 years
- Completed

MIMICS 2

N = 271 43 sites USA/Japan/Germany

- IDE Registry
- FU 3 years
- Completed

MIMICS^{3D} USA

N = c. 500 c. 40 sites USA

- Prospective Registry
- FU 3 years
- Enrolment ongoing

MIMICS et seq

N = c. 400 Multiple sites Europe

- Physician initiated prospective and retrospective registries
- Enrolment ongoing

1750+ patients

Evaluation of Safety and Effectiveness of the BioMimics 3D Stent System in the Femoropopliteal Arteries of Patients with Symptomatic Peripheral Arterial Disease

MIMICS 2

- Primary Endpoints
 - Safety: composite of death, major amputation or CDTLR through 30 days
 - Effectiveness: primary patency at 12-months
- Follow-up: 3 years
- 43 investigational sites enrolled 271 subjects

• US: 31 sites N = 162

• Germany: 6 sites N = 78

• Japan: 6 sites N = 31

Study Principal Investigators

• Timothy M. Sullivan, MD Minneapolis, MN, USA

Thomas Zeller, MD
 Bad Krozingen, Germany

Masato Nakamura, MD Tokyo, Japan

Independent Core labs:

ultrasound; angiography; X-ray

Independent Clinical Event Committee

adjudication

Baseline Patient Demographics

		N= 271 Subjects
Age	Mean years ± SD (N)	68.4 ± 9.5 (271/271)
Gender	Male / Female	180 (66.4%) / 91 (33.6%)
Risk Factors	Diabetes Mellitus	45.4% (123/271)
	Hypertension	90.0% (244/271)
	Hypercholesterolemia	81.9% (222/271)
	Smoker Current / Former	80.8% (219/271)
Coronary Revascularization	Previous Percutaneous or	43.2% (117/271)
	Surgical	
Previous Peripheral	None in target vessel	98.2% (266/271)
Intervention		
Rutherford Category	1	0% (0/271)
	2	26.9% (73/271)
	3	67.5% (183/271)
	4	5.2% (14/271)
	5	0.4% (1/271)
Ankle Brachial Index	Mean ± SD (N)	$0.70 \pm 0.20 \ (257/271)$

Baseline Angiography and QVA

Core Laboratory Data		N= 271 Subjects
Reference Vessel Diameter (mm)	Mean ± SD	5.2 ± 0.9 (269/271)
Lesion Type ¹	De novo	100% (271/271)
Lesion Location in	Prox	11.5% (31/270)
Femoropopliteal Artery	Mid	48.1% (130/270)
	Distal	40.4% (109/270)
Diameter Stenosis (%)	Mean ± SD	77.8 ± 18.3 (269/271)
Lesion Length (mm)	Mean ± SD	81.2 ± 38.4 (269/271)
Total Occlusion (%)		30.0 (81/270)
Calcification (%)	None - Mild	54.1 (146/270)
	Moderate - Severe	45.9 (124/270)
Run-off (%) - 1 or more patent tibial artery (<50% stenosis)		98.8 (237/240)

¹ Investigator-reported

Index Procedure Data

		N= 271 Subjects
BioMimics 3D stents placed ¹	# Stents / N	305 / 271
	# Subjects with 1 stent	87.5% (237/271)
	# Subjects with 2 stents	12.5% (34/271)
Stented Segment Length ²	Mean ± SD (mm)	112.3 ± 36.3 (269/271)
Diameter Stenosis ²	Pre-stent % ± SD	77.8 ± 18.3 (269/271)
	Post-stent % ± SD	12.6 ± 7.5 (269/271)
Dissections ²	No Dissection	97.8% (263/269)
	Type A-C	2.2% (6/269)
	Type D-F	0% (0/269)
Device Success		100% (271/271)
Technical Success		100% (269/269)

Technical Success: Core Lab determined ≤50% residual diameter stenosis (in-stent) at end of index procedure

Device Successful delivery of System; placement of stent and retrieval of System

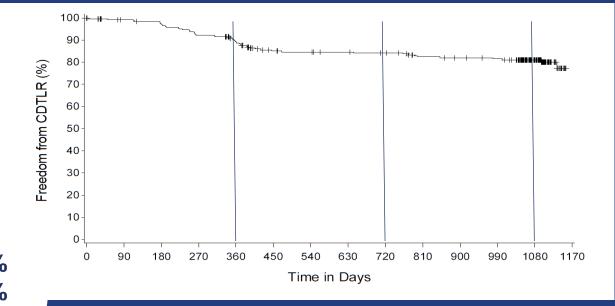
¹ Investigator-reported

Primary Endpoint: Safety

Composite of CEC-adjudicated Major Adverse Events through 30 days, including death, any major amputation performed on the target limb, or Clinically-Driven Target Lesion Revascularisation

	Performance Goal	Rate (n/N) [95% CI]
Freedom from MAE through 30 days	>88%	99.6% (268/269) [97.7%, 100%]
Primary safety end	lpoint	Achieved

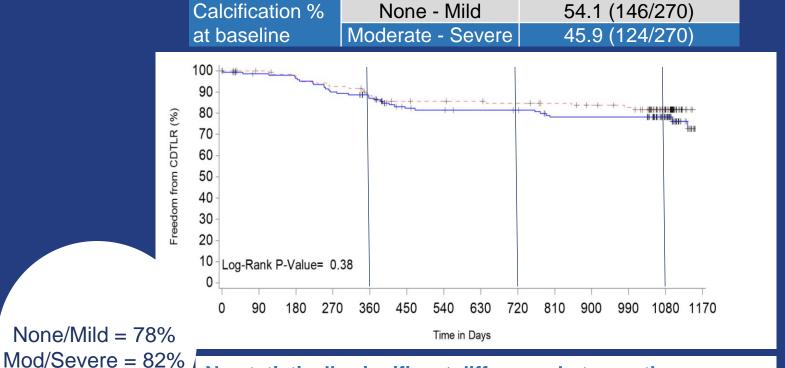
Primary Endpoint: Effectiveness


Primary stent patency rate at 12 months.

	Performance Goal	Rate (n/N) [95% CI]
Primary stent patency	>66%	73.1% (182/249) [67.3%, 78.2%]
Primary effectiven	ess endpoint	Achieved

Patency was defined as no significant reduction in luminal diameter (< 50% diameter stenosis) since the index procedure.

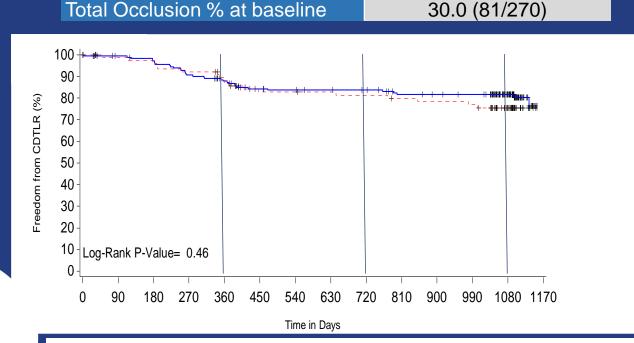
Loss of patency was determined by an independent core laboratory when the peak systolic velocity ratio (PSVR) exceeds 2.0, or where angiography revealed > 50% diameter stenosis, or where the subject had a CDTLR.


Freedom from Clinically-Driven TLR at 3 Years = 81%

1-year = 89% 2-year = 84% 3-year = 81%

> *Core Lab adjudicated, clinically-driven TLR with objective evidence Subjects are censored at their last known follow-up, or at time of study exit (withdrawal or lost to follow-up) or death

Freedom from Clinically-Driven TLR at 3 Years Lesion Calcification


No statistically significant difference between the groups

Subjects are censored at their last DUS follow-up, or at time of study exit (withdrawal or lost to follow-up) or death.

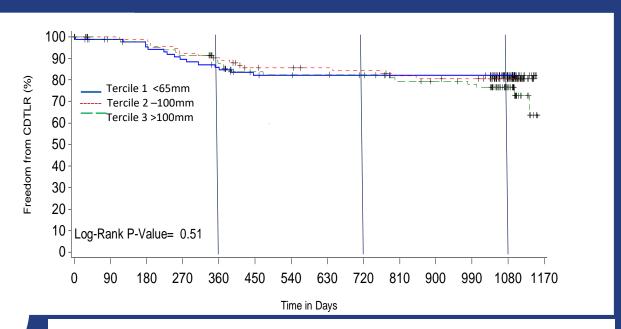
Subjects who are PATENT at DUS follow-up are censored at the end of follow-up window

Data on file at Veryan Medical

Freedom from Clinically-Driven TLR at 3 Years CTO vs. Stenosis

CTO = 76% Stenosis = 82%

No statistically significant difference between the groups


Subjects are censored at their last DUS follow-up, or at time of study exit (withdrawal or lost to follow-up) or death.
Subjects who are PATENT at DUS follow-up are censored at the end of follow-up window
Data on file at Veryan Medical

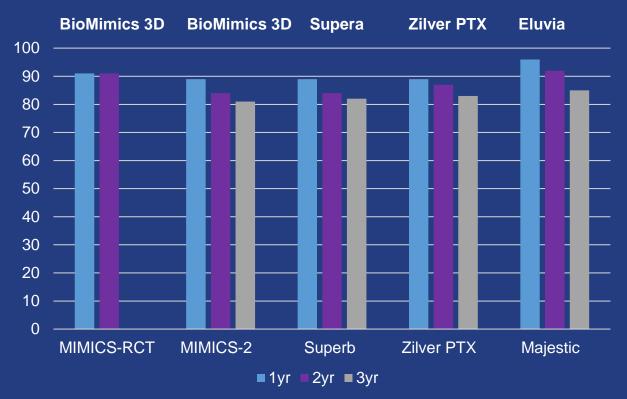
Freedom from Clinically-Driven TLR at 3 Years Tercile of Lesion Length

Lesion Length (mm)

Mean ± SD

81.2 ± 38.4 (269/271)

Tercile 1 = 82% Tercile 2 = 81% Tercile 3 = 77%


No statistically significant difference between the groups

Subjects are censored at their last DUS follow-up, or at time of study exit (withdrawal or lost to follow-up) or death.

Subjects who are PATENT at DUS follow-up are censored at the end of follow-up window

Data on file at Veryan Medical

Mimetic/DES Study Comparisons-Freedom from CDTLR

Comparable outcomes to DES and Supera despite more challenging lesions and without the need for lesion preparation

MIMICS-2 Results

- Reproducible, rigorous, high quality data from US, Japan and Europe
- 81% freedom from CDTLR at 3 years
- Comparable outcomes to DCB, DES and Supera despite more challenging lesions and without the need for lesion preparation – providing ease-of-use simplicity and longterm benefits
- 0% stent fracture

BioMimics 3D

MIMICS-2 study shows continuing benefit of BioMimics 3D at *3 Years*, even in challenging cases

Conclusion

BioMimics 3D reduces the burden of re-intervention for the patient <u>and</u> the health care system^{1, 2}

Post Approval Study

A prospective, multicenter observational study evaluating the safety, effectiveness and device performance of the BioMimics 3D Vascular Stent System within a real-world clinical population of patients undergoing femoropopliteal intervention.

- 40 sites across US
- 500 total patients
- CEC and Independent Core Lab
- First enrollments targeted for Q4 2020
- Coordinating Investigators:
 - Dr. Sahil Parikh
 - Dr. Miguel Montero Baker
 - Dr. Bob Beasley